CCCryo - Collection of Cryophilic Organisms

Schneealgenfeld am Gnålodden auf Spitzbergen
© Fraunhofer IZI-BB, Thomas Leya
Snow algae field at Gnålodden on Spitsbergen
Mikroalgen haben sich an das extreme Habitat polarer Schneefelder angepasst und bilden an den Berghängen Spitzbergens roten Schnee.
© Fraunhofer IZI-BB, Foto: Thomas Leya
Some microalgae have adapted to the extreme habitat of polar snowfields and form red snow on the mountain slopes of Spitsbergen.

This research segment deals with the adaptation strategies and usability of cryophilic (= cold-loving) freshwater microalgae, i.e. snow and permafrost algae. Cryophilic algae are exposed to a variety of extreme stress factors in their natural habitats. First and foremost, these include low temperatures, intense light and UV radiation, dehydration and greatly varying nutrient availability and salt content. The goal is to characterize the isolates in terms of their diverse strategies for adapting to these extreme environmental parameters and to take the special enzymes and metabolites developed from the algae and use them in industrial applications.

The CCCryo culture collection, which is unparalleled in its scope and diversity, serves as the basis for this. The algae strains were collected and isolated during expeditions to the polar regions. Cyanobacteria, mosses, fungi and eubacteria are cultivated as well. The www.cccryo.fraunhofer.de website provides strain details and ordering information.

Expeditionen

Octocopter system for airborne mapping
© Fraunhofer IZI-BB, Thomas Leya
Octocopter system for airborne mapping

From 2015 to 2016, two CCCryo strains »visited« the International Space Station (ISS) as part of the BIOMEX project coordinated by the German Aerospace Center (DLR). More specifically, they spent a good one and a half years just outside the ISS. After returning to earth, they exhibited their extraordinary adaptability to different conditions, which apparently also includes the extremes outside the ISS, e.g. vacuum, UV-A/B/C radiation and intense temperature fluctuations – nearly all samples survived their space journey.

The sixth expedition to Svalbard was undertaken in 2013. The mission was to gain a comprehensive overview of the distribution of snow algae fields along the entire Svalbard coast and nearby islands to the east. What had been unclear in the past was why red and green snow – the mass phenomenon of snow algae blooms – was very pronounced in some regions but did not occur in others. During the expedition in 2010, the availability of nutrients was ruled out as the sole factor. With the help of a remote-controlled octocopter system with VIS and IR cameras as well as chemical soil analysis, it was possible to now show how the predominant geological formations in the different regions of Svalbard and the small-scale topography affect the prevalence of snow algae. For example, these extremophile organisms prefer siliceous soils (sandstone and gneiss) with low pH levels and low carbonate levels over lime-rich regions. In contrast, there is a specific taxonomic group found particularly frequently in calcareous soils. Microclimatic conditions, such as sufficient precipitation, also appear to be important. These field results offer important clues into the ideal culture conditions for these complex algae.

Cold-Active Enzymes and Proteins

Recrystallization assay
© Fraunhofer IZI-BB, Thomas Leya
Recrystallization assay with ISP from the snow algae strain CCCryo 050-99 (scale = 50 μm)

Ice structuring proteins (ISP), which are also frequently referred to as ice binding proteins (IBP) or antifreeze proteins (AFP), are typical for obligate cryophilic snow algae. These proteins are released from single-cell algae and bind to the ice surfaces. Because they only bind to a certain layer of the ice crystals, they prevent uncontrolled growth and force the ice crystals to form a small, hexagonal bipyramidal structure, thus preventing the recrystallization that usually occurs in freezing solutions.

Algae Biomass as Starting Material for Cosmetic Additives

The Swiss company Mibelle AG Biochemistry develops innovative additives for cosmetics. During the long-standing partnership with Mibelle, a process has been developed for the industrial-scale production of special ingredients from snow algae. We are constantly developing and optimizing the production process. We also work according to standard operating procedures (SOP) to ensure the production of high-purity, uncontaminated algal biomass.

The »snow algae cosmetics« from various brands are currently sold in the cosmetics sector worldwide.

Other natural ingredients from CCCryo strains for innovative cosmetics are described in our brochure

  • CCCryo algae culture collection containing over 550 isolates of cryophilic organisms (algae, cyanobacteria, fungi, mosses, yeasts and bacteria)
    The database of the CCCryo strain collection as well as ordering information are available on the website. The algae are available to public and industrial research institutions.
  • In-situ sterilizable glass tube photobioreactors in multiloop- and double-helix design with airlift principle (1 x 60 L, 2 x 30 L, 3 x 25 L, 6 x 10 L), total volume in sterile production process = approx. 255 L, with an annual capacity of approx. 100 kg fresh algae mass
  • Cryomicroscope with digital image processing
  • Gas chromatograph with FID detector (Agilent 7890B)
  • Element analyzer (EuroEA CNS)
  • Pigment analytics (HPLC)

  • German Research Centre for Geosciences GFZ, Potsdam (Germany)
  • German Aerospace Center (DLR), Berlin (Germany)
  • Humboldt University of Berlin, Berlin (Germany)
  • IOI Oleochemicals GmbH & Co. KG, Witten (Germany)
  • Mibelle Biochemistry, Mibelle AG, Buchs (Switzerland)
  • Collection of Algal Cultures SAG, Georg-August-University Göttingen., Göttingen (Germany)
  • University of California, Berkeley (U.S.A.)

  • Novis, P. M., Kodner, R. B., Podolyan, A., & Leya, T. (2024). Chloromonas fuhrii sp. nov. (Chlorophyceae), a cosmopolitan alga from colored snow. Phycologia, 1–14. https://doi.org/10.1080/00318884.2024.2313780
  • Schimani, K., Abarca, N., Zimmermann, J., Skibbe, O., Jahn, R., Kusber, W.-H., Leya, T., & Mora, D. (2024 (ahead of print 2023)). Molecular phylogenetics coupled with morphological analyses of Arctic and Antarctic strains place Chamaepinnularia (Bacillariophyta) within the Sellaphoraceae. Fotteahttps://doi.org/10.5507/fot.2023.002
  • Liu, Y., Jeraldo, P., Herbert, W., McDonough, S., Eckloff, B., Schulze-Makuch, D., de Vera, J.-P., Cockell, C., Leya, T., Baqué, M., Jen, J., & Walther-Antonio, M. (2022, 2022/05/20/). Whole genome sequencing of cyanobacterium Nostoc sp. CCCryo 231-06 using microfluidic single cell technology. iScience, 25(5), 104291. https://doi.org/10.1016/j.isci.2022.104291
  • Liu, Y., Jeraldo, P., Herbert, W., McDonough, S., Eckloff, B., de Vera, J.-P., Cockell, C., Leya, T., Baqué, M., Jen, J., Schulze-Makuch, D., & Walther-Antonio, M. (2022). Non-random genetic alterations in the cyanobacterium Nostoc sp. exposed to space conditions. Scientific Reports, 12, 12580. https://doi.org/https://rdcu.be/cSdb9
  • Leya, T. (2022, 2022/12/31). The CCCryo Culture Collection of Cryophilic Algae as a valuable bioresource for algal biodiversity and for novel, industrially marketable metabolites. Applied Phycology, 3(1), 167-188. https://doi.org/10.1080/26388081.2020.1753572
  • Yakimovich, K. M., Gauthier, N. P. G., Engstrom, C. B., Leya, T., & Quarmby, L. M. (2021, 2021/10/01). A molecular analysis of microalgae from around the globe to revise Raphidonema (Trebouxiophyceae, Chlorophyta) [https://doi.org/10.1111/jpy.13183]. Journal of Phycology, 57(5), 1419-1432. https://doi.org/https://doi.org/10.1111/jpy.13183
  • Procházková, L., Leya, T., Křížková, H., & Nedbalová, L. (2019). Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiology Ecology, 95(6), fiz064. https://doi.org/10.1093/femsec/fiz064
  • Leya, T. (2019, 10.01.2019). Die blutrote Schneealge ist Alge des Jahres 2019 [Interview]. radio and pocast; Kulturradio, Rundfunk Berlin Brandenburg. https://www.kulturradio.de/programm/schema/sendungen/kulturradio_am_vormittag/archiv/20190110_0905/wissen_0910.html
  • de Vera, J.-P., Alawi, M., Backhaus, T., Baqué, M., Billi, D., Böttger, U., Berger, T., Cockell, C., Demets, R., de la Torre Noetzel, R., Edwards, H., Elsaesser, A., Fagliarone, C., Fiedler, A., Foing, B., Foucher, F., Fritz, J., Hanke, F., Herzog, T., Horneck, G., Hübers, H.-W., Huwe, B., Joshi, J., Kozyrovska, N., Kruchten, M., Lasch, P., Lee, N., Leya, T., Lorek, A., Moritz, S., Möller, R., Olsson-Francis, K., Onofri, S., Ott, S., Pacelli, C., Podolich, O., Martínez-Frías, J., Rabbow, E., Reitz, G., Rettberg, P., Reva, O., Rothschild, L., Sancho, L. G., Schulze-Makuch, D., Selbmann, L., Serrano, P., Szewzyk, U., Verseux, C., Wagner, D., Westall, F., Wolter, D., & Zucconi, L. (2019). Limits of life and the habitability of Mars: The ESA space experiment BIOMEX on the ISS. Astrobiology, 19(2), 145-157. https://doi.org/10.1089/ast.2018.1897
  • Liu, Y., Schulze-Makuch, D., de Vera, J.-P., Cockell, C., Leya, T., Baqué, M., & Walther-Antonio, M. (2018). The development of an effective bacterial single-cell lysis method suitable for whole genome amplification in microfluidic platforms. Micromachines, 9(8), art. no. 367. https://doi.org/10.3390/mi9080367
  • Baqué, M., Hanke, F., Böttger, U., Leya, T., Moeller, R., & Vera, J.-P. (2018). Protection of cyanobacterial carotenoids' Raman signatures by Martian mineral analogues after high-dose gamma irradiation. Journal of Raman Spectroscopy, 49(10), 1617-1627. https://doi.org/doi:10.1002/jrs.5449
  • Leya, T., Baqué, M., Rabbow, E., & de Vera, J. P. (2017, 13.-19.09.2017). 241. Cryophilic algae survive in space. Phycologia, 56(sp4), 115.
  • Wagner, D., de Vera, J.-P., Joshi, J., Leya, T., & Schulze-Makuch, D. (2015). Astrobiologie - dem Leben im Universum auf der Spur. System Erde5(1), 40-47. https://doi.org/http://doi.org/10.2312/GFZ.syserde.05.01.7
  • Leya, T., Klump, J., & Fuhr, G. (2015, 2015/08/03). Snow algae all over Svalbard? - An(other) attempt to explain their distribution patterns. European Journal of Phycology, 50(sup1), 77. https://doi.org/10.1080/09670262.2015.1069489
  • Kryvenda, A., Stehr, M., Leya, T., Olberg, B., & Friedl, T. (2015, 2015/08/03). The European PUFAChain project (FP7) - a value chain from algal biomass to lipid-based products. European Journal of Phycology, 50(sup1), 40. https://doi.org/10.1080/09670262.2015.1069489
  • Remias, D., Wastian, H., Lütz, C., & Leya, T. (2013). Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarctic Science, 25(5), 648-656. https://doi.org/10.1017/S0954102013000060
  • Leya, T. (2013). Snow Algae: Adaptation strategies to survive on snow and ice. In J. Seckbach, A. Oren, & H. Stan-Lotter (Eds.), Polyextremophiles: Life Under Multiple Forms of Stress (Vol. 27, pp. 401-423). Springer Netherlands. https://doi.org/10.1007/978-94-007-6488-0_17
  • Leya, T. (2013). Survival Strategies in Psychrophilic Snow Algae - Ice Structuring Proteins (ISP). CryoLetters, 34(2), 174-216.
  • Spijkerman, E., Wacker, A., Weithoff, G., & Leya, T. (2012). Elemental and fatty acid composition of snow algae in Arctic habitats. Frontiers in Microbiology, 3, 380. https://doi.org/10.3389/fmicb.2012.00380
  • Remias, D., Schwaiger, S., Aigner, S., Leya, T., Stuppner, H., & Lütz, C. (2012). Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiology Ecology, 79(3), 638-648. https://academic.oup.com/femsec/article/79/3/638/491833?login=false/
  • de Vera, J.-P., Boettger, U., Noetzel, R. d. l. T., Sánchez, F. J., Grunow, D., Schmitz, N., Lange, C., Hübers, H.-W., Billi, D., Baqué, M., Rettberg, P., Rabbow, E., Reitz, G., Berger, T., Möller, R., Bohmeier, M., Horneck, G., Westall, F., Jänchen, J., Fritz, J., Meyer, C., Onofri, S., Selbmann, L., Zucconi, L., Kozyrovska, N., Leya, T., Foing, B., Demets, R., Cockell, C. S., Bryce, C., Wagner, D., Serrano, P., Edwards, H. G. M., Joshi, J., Huwe, B., Ehrenfreund, P., Elsaesser, A., Ott, S., Meessen, J., Feyh, N., Szewzyk, U., Jaumann, R., & Spohn, T. (2012). Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planetary and Space Science, 74(1), 103-110. https://doi.org/http://dx.doi.org/10.1016/j.pss.2012.06.010
  • Leya, T. (2011, 04.-09.09.2011). CCCryo - Culture Collection of Cryophilic Algae: a bioresource for industrially relevant metabolites. European Journal of Phycology, 46(sup1), 83-84. https://doi.org/10.1080/09670262.2011.613190
  • Remias, D., Karsten, U., Lütz, C., & Leya, T. (2010). Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma, 243(1-4), 73-86. https://doi.org/10.1007/s00709-010-0123-y
  • Leya, T., Rahn, A., Lütz, C., & Remias, D. (2009). Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiology Ecology, 67(3), 432-443. https://doi.org/10.1111/j.1574-6941.2008.00641.x
  • Leya, T. (2009, 02.-05.06.2009). Can life be detected by impedance measurements due to changes in the electric properties of the environment? 2nd Helmholtz Alliance Week - Planetary Evolution and Life, Berlin-Adlershof (Germany).
  • Leya, T. (2008). Die „Ross-Proben“ von den Crimson Cliffs: Probe „MB_ES_1781c“ aus der Ehrenberg Sammlung des Naturkundemuseums Berlin.
  • Leya, T., Bley, U. S., & Zacke, T. (2006). 75. Adaptation strategies of psychrophilic snow algae to their cold environment. Cryobiology, 53(3), 399-399. http://www.sciencedirect.com/science/article/B6WD5-4MJC233-2N/2/bcc413ba72a95ad8031a76e5699e7b35
  • Leya, T. (2006). Fraunhofer IBMT benennt Landmarke in der Arktis
  • Leya, T., Müller, T., Ling, H. U., & Fuhr, G. R. (2004). Snow algae from north-western Spitsbergen (Svalbard) [Report]. Reports on Polar and Marine Research, 492, 46-54.
  • Leya, T. (2003). Feldstudien und genetische Untersuchungen zur Kryophilie der Schneealgen Nordwestspitzbergens [Doktorarbeit, Humboldt-Universität zu Berlin]. Berlin - published by Shaker Verlag, Aachen (2004), ISBN 3-8322-2438-6.
  • Müller, T., Leya, T., & Fuhr, G. (2001). Persistent snow algal fields in Spitsbergen: field observations and a hypothesis about the annual cell circulation. Arctic Antarctic and Alpine Research, 33(1), 42-51.
  • Leya, T., Müller, T., Ling, H. U., & Fuhr, G. (2001). Psychrophilic microalgae from north-west Spitsbergen, Svalbard: their taxonomy, ecology and preliminary studies of their cold adaptation using single cell electrorotation. Nova Hedwigia, Beiheft, 123, 551-570.
  • Reichle, C., Schnelle, T., Müller, T., Leya, T., & Fuhr, G. (2000). A new microsystem for automated electrorotation measurements using laser tweezers. Biochimica et Biophysica Acta, 1459, 218-229.
  • Leya, T., & Kies, L. (1997). The influence of drainage from potash mining on the composition of the algal flora in the River Wipper (Thuringia, Germany) - a preliminary study. Limnologica, 27(3), 301-306.
  • Leya, T. (1997). Diatoms for biomonitoring salinization. Phycologia, 36(4), 61-62.
  • de Nys, R., Leya, T., Maximilien, R., Afsar, A., Nair, P. S. R., & Steinberg, P. D. (1996). The need for standardised broad scale bioassay testing: a case study using the red alga Laurencia rigidaBiofouling, 10(1-3), 213-224. http://www.tandfonline.com/doi/abs/10.1080/08927019609386281?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed